Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury.

نویسندگان

  • J E Jordan
  • M C Montalto
  • G L Stahl
چکیده

BACKGROUND Complement consists of a complex cascade of proteins involved in innate and adaptive immunity. The cascade can be activated through 3 distinct mechanisms, designated the classical, alternative, and lectin pathways. Although complement is widely accepted as participating in the pathophysiology of ischemia-reperfusion injury, the specific role of the lectin pathway has not been addressed. METHODS AND RESULTS Monoclonal antibodies (mAbs; P7E4 and 14C3.74, IgG1kappa isotypes) were raised against rat mannose-binding lectin (rMBL). Both mAbs recognized rMBL-A by Western analysis or surface plasmon resonance. P7E4, but not 14C3.74, exhibited a concentration-dependent inhibition of the lectin pathway, with maximal effect at 10 microg/mL. In vivo, rats were subjected to 30 minutes of left coronary artery occlusion and 4 hours of reperfusion. Complement C3 deposition was greatly attenuated in hearts pretreated with P7E4 compared with 14C3.74-treated hearts. Pretreatment with P7E4 (1 mg/kg) significantly reduced myocardial creatine kinase loss (48%), infarct size (39%), and neutrophil infiltration (47%) compared with 14C3.74-treated animals. In addition, P7E4 pretreatment significantly attenuated the expression of proinflammatory genes (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and interleukin-6) after ischemia-reperfusion. CONCLUSIONS The lectin complement pathway is activated after myocardial ischemia-reperfusion and leads to tissue injury. Blockade of the lectin pathway with inhibitory mAbs protects the heart from ischemia-reperfusion by reducing neutrophil infiltration and attenuating proinflammatory gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complement activation after oxidative stress: role of the lectin complement pathway.

The complement system plays an important role in mediating tissue injury after oxidative stress. The role of mannose-binding lectin (MBL) and the lectin complement pathway (LCP) in mediating complement activation after endothelial oxidative stress was investigated. iC3b deposition on hypoxic (24 hours; 1% O(2))/reoxygenated (3 hours; 21% O(2)) human endothelial cells was attenuated by N-acetyl-...

متن کامل

Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury.

The mannose-binding lectin (MBL), a circulating pattern recognition molecule, recognizes a wide range of infectious agents with resultant initiation of the complement cascade in an Ab-independent manner. MBL recognizes infectious non-self and altered self in the guise of apoptotic and necrotic cells. In this study, we demonstrate that mice lacking MBL, and hence are devoid of MBL-dependent lect...

متن کامل

Vascular Medicine Endogenous and Natural Complement Inhibitor Attenuates Myocardial Injury and Arterial Thrombogenesis

Background—Coagulation disorders and reperfusion of ischemic myocardium are major causes of morbidity and mortality. Lectin pathway initiation complexes are composed of multimolecular carbohydrate recognition subcomponents and 3 lectin pathway–specific serine proteases. We have recently shown that the lectin pathway–specific carbohydrate recognition subcomponent mannose-binding lectin plays an ...

متن کامل

Endogenous and natural complement inhibitor attenuates myocardial injury and arterial thrombogenesis.

BACKGROUND Coagulation disorders and reperfusion of ischemic myocardium are major causes of morbidity and mortality. Lectin pathway initiation complexes are composed of multimolecular carbohydrate recognition subcomponents and 3 lectin pathway-specific serine proteases. We have recently shown that the lectin pathway-specific carbohydrate recognition subcomponent mannose-binding lectin plays an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 104 12  شماره 

صفحات  -

تاریخ انتشار 2001